Serveur d'exploration sur les pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.

Identifieur interne : 000148 ( Main/Exploration ); précédent : 000147; suivant : 000149

Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.

Auteurs : Yang Song [République populaire de Chine] ; Yan Wang [République populaire de Chine] ; Dandan Guo [République populaire de Chine] ; Lan Jing [République populaire de Chine]

Source :

RBID : pubmed:30634896

Descripteurs français

English descriptors

Abstract

BACKGROUND

Real-time RT-PCR has become a common and robust technique to detect and quantify low-abundance mRNA expression and is a prefered tool when examining fungal gene expression in infected host tissues. However, correct evaluation of gene expression data requires accurate and reliable normalization against a reference transcript. Thus, the identification of reference genes with stable expression during different conditions is of paramount importance. Here, we present a study where in vitro and in planta experiments were used to validate the expression stability of reference gene candidates of Puccinia helianthi Schw., an obligate pathogen that causes rust in sunflower (Helianthus annuus).

RESULTS

Eleven reference genes of P. helianthi were validated at different growth stages. Excel-based software geNorm, BestKeeper and NormFinder were used to evaluate the reference gene transcript stabilities. Of eleven reference gene candidates tested, three were stably expressed in urediniospores, germinating growth stage and in planta. Two of these genes (UBC, EF2), encoding ubiquitin-conjugating enzyme and elongation factor 2, proved to be the most stable set of reference genes under the experimental conditions used.

CONCLUSION

We found that UBC and EF2 are suitable candidates for for the standardization of gene expression studies in the plant pathogen P. helianthi and potentially other related pathogens.


DOI: 10.1186/s12870-019-1629-x
PubMed: 30634896
PubMed Central: PMC6329156


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.</title>
<author>
<name sortKey="Song, Yang" sort="Song, Yang" uniqKey="Song Y" first="Yang" last="Song">Yang Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Dandan" sort="Guo, Dandan" uniqKey="Guo D" first="Dandan" last="Guo">Dandan Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jing, Lan" sort="Jing, Lan" uniqKey="Jing L" first="Lan" last="Jing">Lan Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30634896</idno>
<idno type="pmid">30634896</idno>
<idno type="doi">10.1186/s12870-019-1629-x</idno>
<idno type="pmc">PMC6329156</idno>
<idno type="wicri:Area/Main/Corpus">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000260</idno>
<idno type="wicri:Area/Main/Curation">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000260</idno>
<idno type="wicri:Area/Main/Exploration">000260</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.</title>
<author>
<name sortKey="Song, Yang" sort="Song, Yang" uniqKey="Song Y" first="Yang" last="Song">Yang Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Dandan" sort="Guo, Dandan" uniqKey="Guo D" first="Dandan" last="Guo">Dandan Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jing, Lan" sort="Jing, Lan" uniqKey="Jing L" first="Lan" last="Jing">Lan Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019</wicri:regionArea>
<wicri:noRegion>010019</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (pathogenicity)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Helianthus (metabolism)</term>
<term>Helianthus (microbiology)</term>
<term>Real-Time Polymerase Chain Reaction (methods)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (pathogénicité)</term>
<term>Helianthus (microbiologie)</term>
<term>Helianthus (métabolisme)</term>
<term>RT-PCR (méthodes)</term>
<term>Réaction de polymérisation en chaine en temps réel (méthodes)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Real-time RT-PCR has become a common and robust technique to detect and quantify low-abundance mRNA expression and is a prefered tool when examining fungal gene expression in infected host tissues. However, correct evaluation of gene expression data requires accurate and reliable normalization against a reference transcript. Thus, the identification of reference genes with stable expression during different conditions is of paramount importance. Here, we present a study where in vitro and in planta experiments were used to validate the expression stability of reference gene candidates of Puccinia helianthi Schw., an obligate pathogen that causes rust in sunflower (Helianthus annuus).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Eleven reference genes of P. helianthi were validated at different growth stages. Excel-based software geNorm, BestKeeper and NormFinder were used to evaluate the reference gene transcript stabilities. Of eleven reference gene candidates tested, three were stably expressed in urediniospores, germinating growth stage and in planta. Two of these genes (UBC, EF2), encoding ubiquitin-conjugating enzyme and elongation factor 2, proved to be the most stable set of reference genes under the experimental conditions used.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>We found that UBC and EF2 are suitable candidates for for the standardization of gene expression studies in the plant pathogen P. helianthi and potentially other related pathogens.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30634896</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.</ArticleTitle>
<Pagination>
<MedlinePgn>20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-1629-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Real-time RT-PCR has become a common and robust technique to detect and quantify low-abundance mRNA expression and is a prefered tool when examining fungal gene expression in infected host tissues. However, correct evaluation of gene expression data requires accurate and reliable normalization against a reference transcript. Thus, the identification of reference genes with stable expression during different conditions is of paramount importance. Here, we present a study where in vitro and in planta experiments were used to validate the expression stability of reference gene candidates of Puccinia helianthi Schw., an obligate pathogen that causes rust in sunflower (Helianthus annuus).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Eleven reference genes of P. helianthi were validated at different growth stages. Excel-based software geNorm, BestKeeper and NormFinder were used to evaluate the reference gene transcript stabilities. Of eleven reference gene candidates tested, three were stably expressed in urediniospores, germinating growth stage and in planta. Two of these genes (UBC, EF2), encoding ubiquitin-conjugating enzyme and elongation factor 2, proved to be the most stable set of reference genes under the experimental conditions used.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We found that UBC and EF2 are suitable candidates for for the standardization of gene expression studies in the plant pathogen P. helianthi and potentially other related pathogens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Dandan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Lan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31760509</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006368" MajorTopicYN="N">Helianthus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Algorithms</Keyword>
<Keyword MajorTopicYN="N">Puccinia helianthi Schw.</Keyword>
<Keyword MajorTopicYN="N">RT-qPCR</Keyword>
<Keyword MajorTopicYN="N">Reference gene</Keyword>
<Keyword MajorTopicYN="N">Sunflower</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30634896</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-1629-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-1629-x</ArticleId>
<ArticleId IdType="pmc">PMC6329156</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 1999 Oct 8;75(2-3):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2003 Dec;6(4):233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 23;313(4):856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2004 Mar;26(6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Dec 1;241(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Immun. 2005 Jun;6(4):279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15815687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2006 Aug 04;7:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2007 Mar-Apr;99(2):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17682775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Dec 1;132(4):353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17868942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2008 Jan 8;649(1-2):126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Apr;45(4):498-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18060814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Aug;6(6):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(2):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Apr;38(4):2813-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21088905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Sep;115(9):891-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33278</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22479379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2014 Apr;46(4):330-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24457517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2015 Jan 10;554(2):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Jul;34(7):1139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25721200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2015 Nov;118:42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26327538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 18;11(2):e0149277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26891128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 07;11(3):e0150651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26950697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2016 Aug;127:82-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27237774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Aug 25;11(8):e0160637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Song, Yang" sort="Song, Yang" uniqKey="Song Y" first="Yang" last="Song">Yang Song</name>
</noRegion>
<name sortKey="Guo, Dandan" sort="Guo, Dandan" uniqKey="Guo D" first="Dandan" last="Guo">Dandan Guo</name>
<name sortKey="Jing, Lan" sort="Jing, Lan" uniqKey="Jing L" first="Lan" last="Jing">Lan Jing</name>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30634896
   |texte=   Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30634896" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 09:39:13 2020. Site generation: Fri Nov 20 09:41:54 2020